Fixing improper colorings of graphs

Konstanty Junosza-Szaniawski¹ Mathieu Liedloff² Paweł Rzążewski¹

¹Warsaw University of Technology, Faculty of Mathematics and Information Science, Warszawa, Poland

²Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, Orléans, France

SOFSEM 2015, Pec pod Sněžkou

Junosza-Szaniawski, Liedloff, Rzążewski [Fixing improper colorings of graphs](#page-36-0)

For two r-colorings φ and φ' of G, we define:

$$
dist(\varphi, \varphi') = |\{v \in V : \varphi(v) \neq \varphi'(v)\}|.
$$

イ伊 トラミチ マミド

4 17 18

 2990

э

For two r-colorings φ and φ' of G, we define:

$$
\mathrm{dist}(\varphi,\varphi')=|\{v\in V\colon \varphi(v)\neq \varphi'(v)\}|.
$$

Problem: r-Color-Fixing (r-Fix)

Instance: A graph G, integer k, an r-coloring φ of $V(G)$. Question: Does there exist a proper r-coloring φ' of G such that $dist(\varphi, \varphi') \leq k$?

 $\overline{\chi}^r_\varphi(\mathsf{G}) = \mathsf{min}\{ \operatorname{dist}(\varphi, \varphi') : \varphi' \text{ is a proper } r\text{-coloring of } \mathsf{G} \}$

∢ 何 ▶ 〈 ヨ ▶ 〈 ヨ ▶ 〉

Example

 $n = 2p$ $r = p + 1$ (equal to the chromatic number)

Junosza-Szaniawski, Liedloff, Rzążewski [Fixing improper colorings of graphs](#page-0-0)

メ御き メモ メメモ トー

4 0 8

 2990

性

Example

 $n = 2p$ $r = p + 1$ (equal to the chromatic number)

We need to recolor all vertices from K_p .

医间周的间周的

つくい

4 17 18

Example

 $n = 2p$ $r = p + 1$ (equal to the chromatic number)

We need to recolor all vertices from K_p .

$$
\overline{\chi}_\varphi^{p+1}(\mathcal{G}_p)=p
$$

御き メミメ メミメー

つくい

4 17 18

 $n = 2p$ $r = p + 1$ (equal to the chromatic number)

Junosza-Szaniawski, Liedloff, Rzążewski [Fixing improper colorings of graphs](#page-0-0)

K 御 と K 唐 と K 唐 と …

4 0 8

 2990

性

 $n = 2p$ $r = p + 1$ (equal to the chromatic number)

We need to recolor $p-1$ vertices from K_p .

御 > メミ > メミ > →

 299

4 17 18

 $n = 2p$ $r = p + 1$ (equal to the chromatic number)

We need to recolor $p-1$ vertices from K_p . But then we have to recolor $p-1$ "upper" vertices.

STATES

 $n = 2p$ $r = p + 1$ (equal to the chromatic number)

We need to recolor $p-1$ vertices from K_p . But then we have to recolor $p-1$ "upper" vertices. All but two vertices have to be recolored.

$$
\overline{\chi}_{\varphi'}^{p+1}(\mathit{G}_{p})=2p-2
$$

Observation

r-Fix problem is NP-complete for any $r \geq 3$ (when the number k of allowed recoloring operations is a part of the input).

Observation

r-Fix problem is NP-complete for any $r \geq 3$ (when the number k of allowed recoloring operations is a part of the input).

Observation

For $r < 2$ the r-Fix problem is polynomial.

Observation

r-Fix problem is NP-complete for any $r \geq 3$ (when the number k of allowed recoloring operations is a part of the input).

Observation

For $r < 2$ the r-Fix problem is polynomial.

 \rightarrow The case for $r = 1$ is trivial.

Observation

r-Fix problem is NP-complete for any $r \geq 3$ (when the number k of allowed recoloring operations is a part of the input).

Observation

For $r < 2$ the r-Fix problem is polynomial.

 \rightarrow The case for $r = 1$ is trivial.

 \rightarrow For $r = 2$, if G is not bipartite, then the answer is No.

START START

Complexity of the problem: $r = 2$

Junosza-Szaniawski, Liedloff, Rzążewski [Fixing improper colorings of graphs](#page-0-0)

メタメ メミメ メミメン 差

4 0 8

 299

Complexity of the problem: $r = 2$

Observation

Let G be a connected bipartite graph with bipartition classes X and Y and let φ be a 2-coloring of G. Then we have

$$
\overline{\chi}^2_\varphi(\mathsf{G}) = \min\{|\left(X \ominus \varphi^{-1}(1)\right)|,|\left(X \ominus \varphi^{-1}(2)|\right)\}.
$$

 $0Q$

Brute force algorithm: $\mathcal{O}^* \left(\binom{n}{k} r^k \right) = \mathcal{O}^* \left(n^k r^k \right)$.

Junosza-Szaniawski, Liedloff, Rzążewski [Fixing improper colorings of graphs](#page-0-0)

K 何 ≯ (ヨ) (ヨ) …

 299

4 17 18

Brute force algorithm: $\mathcal{O}^* \left(\binom{n}{k} r^k \right) = \mathcal{O}^* \left(n^k r^k \right)$. \rightarrow The r-Fix problem is in XP, when parametrized by k.

医阿雷氏阿雷氏征

つへい

Brute force algorithm: $\mathcal{O}^* \left(\binom{n}{k} r^k \right) = \mathcal{O}^* \left(n^k r^k \right)$. \rightarrow The r-Fix problem is in XP, when parametrized by k.

Theorem

For fixed r, the r-Fix problem is in FPT, when parametrized by k . (there exist an algorithm with running time $f(k) \cdot poly(n)$)

医阿里氏阿里氏

Brute force algorithm: $\mathcal{O}^* \left(\binom{n}{k} r^k \right) = \mathcal{O}^* \left(n^k r^k \right)$. \rightarrow The r-Fix problem is in XP, when parametrized by k.

Theorem

For fixed r, the r-Fix problem is in FPT, when parametrized by k . (there exist an algorithm with running time $f(k) \cdot poly(n)$)

This can be shown using a simple branching algorithm.

Parametrized algorithm

Parametrized algorithm

Algorithm: Fix(r, $\mathcal{I} = (G, k, \varphi)$) 1 if φ is a proper coloring of G then return Yes 2 if $k = 0$ then return No 3 $xy \leftarrow$ any edge such that $\varphi(x) = \varphi(y)$ 4 foreach $v \in \{x, y\}$ do 5 foreach $col \in [r] \setminus {\varphi(v)}$ do $\begin{array}{|c|c|c|}\hline \hspace{0.1in}\circ & \hspace{0.1in} & \varphi'\leftarrow \varphi \text{ with vertex } v \text{ recolored to } col\hline \end{array}$ $\begin{array}{|c|c|} \hline \text{7} & \text{ } \end{array} \begin{array}{|c|} \hline \text{ 1} & \text{ if } \hline \text{Fix}(r,\textbf{(G},k-1,\varphi^{\prime}))=\text{Yes} \hline \text{ 1} & \text{ then } \textbf{return} \hline \text{ Yes} \end{array}$

8 return No

The algorithm *Fix* solves the r-Fix problem in time

$$
\mathcal{T}(n,k) \leq (2(r-1))^{k} \cdot n^{\mathcal{O}(1)}.
$$

メス 高下

The r-Fix problem can be reduced to:

Min Weighted Partition Problem

Instance: A set N, integer d and functions $f_1, f_2, \ldots, f_d: 2^N \rightarrow [-M, M]$ for some integer M. Question: What is the minimum w, for which there exists a partition S_1, S_2, \ldots, S_d , such that $\sum_{i=1}^d f_i(S_i) = w$?

医阿里氏阿里氏

The r-Fix problem can be reduced to:

Min Weighted Partition Problem

Instance: A set N, integer d and functions $f_1, f_2, \ldots, f_d: 2^N \rightarrow [-M, M]$ for some integer M. Question: What is the minimum w, for which there exists a partition S_1, S_2, \ldots, S_d , such that $\sum_{i=1}^d f_i(S_i) = w$?

Reduction

$$
N = V(G), d = r, M = r \cdot n,
$$

\n
$$
f_i(S) = \begin{cases} |S \setminus \varphi^{-1}(i)| & \text{if } S \text{ is independent,} \\ r \cdot n & \text{otherwise.} \end{cases}
$$

∢ 何 ▶ . ∢ 手 ▶ . ∢ 手 ▶

Theorem (Björklund, Husfeldt and Koivisto)

The Min Weighted Partition problem can be solved in time $O^*(2^n d^2 M)$ using exponential space and in time $O^*(3^n d^2 M)$ using polynomial space.

Theorem (Björklund, Husfeldt and Koivisto)

The Min Weighted Partition problem can be solved in time $O^*(2^n d^2 M)$ using exponential space and in time $O^*(3^n d^2 M)$ using polynomial space.

Corollary

The r -Fix problem for any fixed r can be solved in time $\mathcal{O}^*(2^n)$ using exponential space and in time $\mathcal{O}^*(3^n)$ using polynomial space.

Graphs with bounded treewidth

If G is a tree (or, more generally, a graph with bounded treewidth), we can use a standard dynamic programming approach:

 $K[v, i]$ – the minimum number of vertices, which need to be recolored to obtain a proper coloring of the subtree rooted at a vertex v , such that v gets color i .

$$
K[v, i] = \begin{cases} [\varphi(v) \neq i] & v \text{ is a leaf,} \\ [\varphi(v) \neq i] + \sum_{u \in children(v)} \min_{j \neq i} K[u, j] & otherwise. \end{cases}
$$

Graphs with bounded treewidth

If G is a tree (or, more generally, a graph with bounded treewidth), we can use a standard dynamic programming approach:

 $K[v, i]$ – the minimum number of vertices, which need to be recolored to obtain a proper coloring of the subtree rooted at a vertex v , such that v gets color i .

$$
K[v, i] = \begin{cases} [\varphi(v) \neq i] & v \text{ is a leaf,} \\ [\varphi(v) \neq i] + \sum_{u \in children(v)} \min_{j \neq i} K[u, j] & otherwise. \end{cases}
$$

Theorem

For any fixed r , the optimization version of r -Fix problem can be solved in time $\mathcal{O}(n \cdot r^{t+2})$, where n is the number of vertices of the input graph and t is its treewidth.

イロト イ母ト イヨト イヨト

 QQ

 $\overline{\chi}(\mathsf{G}) = \mathsf{max}\left\{ \overline{\chi}_{\varphi}^r(\mathsf{G}) : \varphi \colon \mathsf{V}(\mathsf{G}) \to [r], r \geq \chi(\mathsf{G}) \right\}.$

医阿雷氏阿雷氏征

$$
\overline{\chi}(\mathsf{G})=\mathsf{max}\left\{\overline{\chi}_{\varphi}^r(\mathsf{G}):\varphi\colon\mathsf{V}(\mathsf{G})\to[r],r\geq\chi(\mathsf{G})\right\}.
$$

 \rightarrow Attained for $r = \chi(G)$.

AD ▶ イヨ ▶ イヨ ▶ │

$$
\overline{\chi}(\mathsf{G})=\mathsf{max}\left\{\overline{\chi}_{\varphi}^r(\mathsf{G}):\varphi\colon\mathsf{V}(\mathsf{G})\to[r],r\geq\chi(\mathsf{G})\right\}.
$$

 \rightarrow Attained for $r = \chi(G)$.

Theorem

For all G holds
$$
\overline{\chi}(G) \leq \left\lfloor n \cdot \frac{\chi(G)-1}{\chi(G)} \right\rfloor
$$
.

イ母 トラミチ マミメー

$$
\overline{\chi}(G) = \max \left\{ \overline{\chi}_{\varphi}^r(G) : \varphi \colon V(G) \to [r], r \geq \chi(G) \right\}.
$$

 \rightarrow Attained for $r = \chi(G)$.

Theorem

For all G holds
$$
\overline{\chi}(G) \leq \left\lfloor n \cdot \frac{\chi(G)-1}{\chi(G)} \right\rfloor
$$
.

• This bound is tight e.g. for complete graphs.

④ イモ ト イミト イモト

$$
\overline{\chi}(G) = \max \left\{ \overline{\chi}_{\varphi}^r(G) : \varphi \colon V(G) \to [r], r \geq \chi(G) \right\}.
$$

 \rightarrow Attained for $r = \chi(G)$.

Theorem

For all G holds
$$
\overline{\chi}(G) \leq \left\lfloor n \cdot \frac{\chi(G)-1}{\chi(G)} \right\rfloor
$$
.

- This bound is tight e.g. for complete graphs.
- $\overline{\chi}(\mathcal{C}_{2k+1})=k$ (compared to roughly $\frac{4k}{3}$ given by the theorem above).

イロメ イ母メ イヨメ イヨメー

What is the complexity of the problem for $r = 4$ and G planar?

K 何 ≯ (ヨ) (ヨ) …

4 0 8

 QQ

э

What is the complexity of the problem for $r = 4$ and G planar?

Open problem

What is the complexity of the problem if r is not fixed?

4 17 18

4冊 ▶ 4回 ▶

De an

What is the complexity of the problem for $r = 4$ and G planar?

Open problem

What is the complexity of the problem if r is not fixed?

Open problem

Find a polynomial kernel for r-Fix (parametrized by k).

and an

∢ 伊 ▶ → 三 ▶

What is the complexity of the problem for $r = 4$ and G planar?

Open problem

What is the complexity of the problem if r is not fixed?

Open problem

Find a polynomial kernel for r-Fix (parametrized by k).

Open problem

- Find better bounds for $\overline{\chi}(G)$ for planar G (or for some other reasonable class of graphs).
- **•** Find another classes of graphs in which the general bound can be beaten.

イロメ イ母メ イヨメ イヨメ

E

 QQ