Fixing improper colorings of graphs

Konstanty Junosza-Szaniawski¹ Mathieu Liedloff² Paweł Rzążewski ¹

¹Warsaw University of Technology, Faculty of Mathematics and Information Science, Warszawa, Poland

²Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, Orléans, France

SOFSEM 2015, Pec pod Sněžkou

Definition of the problem

For two *r*-colorings φ and φ' of *G*, we define:

$$\operatorname{dist}(\varphi,\varphi') = |\{ \mathsf{v} \in \mathsf{V} \colon \varphi(\mathsf{v}) \neq \varphi'(\mathsf{v}) \}|.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

For two *r*-colorings φ and φ' of *G*, we define:

$$\operatorname{dist}(\varphi,\varphi') = |\{v \in V : \varphi(v) \neq \varphi'(v)\}|.$$

Problem: r-Color-Fixing (r-Fix)

Instance: A graph G, integer k, an r-coloring φ of V(G). **Question:** Does there exist a proper r-coloring φ' of G such that $\operatorname{dist}(\varphi, \varphi') \leq k$?

 $\overline{\chi}_{\varphi}^{r}(G) = \min\{\operatorname{dist}(\varphi, \varphi') : \varphi' \text{ is a proper } r\text{-coloring of } G\}$

・ 同 ト ・ ヨ ト ・ 一 同 ト

Example

n = 2pr = p + 1 (equal to the chromatic number)

(日本) (日本) (日本)

Example

n = 2pr = p + 1 (equal to the chromatic number)

We need to recolor all vertices from K_p .

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

n = 2pr = p + 1 (equal to the chromatic number)

We need to recolor all vertices from K_p .

$$\overline{\chi}_{\varphi}^{p+1}(G_p) = p$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

n = 2pr = p + 1 (equal to the chromatic number)

< □>
 < □>
 < □>
 < □

n = 2pr = p + 1 (equal to the chromatic number)

We need to recolor p-1 vertices from K_p .

(四) (目) (目) (日)

n = 2pr = p + 1 (equal to the chromatic number)

We need to recolor p-1 vertices from K_p . But then we have to recolor p-1 "upper" vertices.

ゆ くちょくちょ

n = 2pr = p + 1 (equal to the chromatic number)

We need to recolor p-1 vertices from K_p . But then we have to recolor p-1 "upper" vertices. All but two vertices have to be recolored.

$$\overline{\chi}_{\varphi'}^{p+1}(G_p)=2p-2$$

伺 ト く ヨ ト く ヨ ト

Observation

r-Fix problem is NP-complete for any $r \ge 3$ (when the number k of allowed recoloring operations is a part of the input).

Observation

r-Fix problem is NP-complete for any $r \ge 3$ (when the number k of allowed recoloring operations is a part of the input).

Observation

For $r \leq 2$ the r-Fix problem is polynomial.

Observation

r-Fix problem is NP-complete for any $r \ge 3$ (when the number k of allowed recoloring operations is a part of the input).

Observation

For $r \leq 2$ the r-Fix problem is polynomial.

ightarrow The case for r=1 is trivial.

Observation

r-Fix problem is NP-complete for any $r \ge 3$ (when the number k of allowed recoloring operations is a part of the input).

Observation

For $r \leq 2$ the r-Fix problem is polynomial.

 \rightarrow The case for r = 1 is trivial.

 \rightarrow For r = 2, if G is not bipartite, then the answer is No.

Complexity of the problem: r = 2

▲御▶ ▲ 理▶ ▲ 理▶ ― 理

Complexity of the problem: r = 2

Observation

Let G be a connected bipartite graph with bipartition classes X and Y and let φ be a 2-coloring of G. Then we have

$$\overline{\chi}_{\varphi}^{2}(G) = \min\{|\left(X \ominus \varphi^{-1}(1)\right)|, |\left(X \ominus \varphi^{-1}(2)|\right)\}$$

Brute force algorithm: $\mathcal{O}^*\left(\binom{n}{k}r^k\right) = \mathcal{O}^*\left(n^kr^k\right).$

御 と く き と く き と …

Brute force algorithm: $\mathcal{O}^*\left(\binom{n}{k}r^k\right) = \mathcal{O}^*\left(n^kr^k\right).$ \rightarrow The *r*-Fix problem is in XP, when parametrized by *k*.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Brute force algorithm: $\mathcal{O}^*\left(\binom{n}{k}r^k\right) = \mathcal{O}^*\left(n^kr^k\right).$ \rightarrow The *r*-Fix problem is in XP, when parametrized by *k*.

Theorem

For fixed r, the r-Fix problem is in FPT, when parametrized by k. (there exist an algorithm with running time $f(k) \cdot poly(n)$)

吊 ・ イヨ ト ・ ヨト

Brute force algorithm: $\mathcal{O}^*\left(\binom{n}{k}r^k\right) = \mathcal{O}^*\left(n^kr^k\right).$ \rightarrow The *r*-Fix problem is in XP, when parametrized by *k*.

Theorem

For fixed r, the r-Fix problem is in FPT, when parametrized by k. (there exist an algorithm with running time $f(k) \cdot poly(n)$)

This can be shown using a simple branching algorithm.

Parametrized algorithm

Parametrized algorithm

8 return No

The algorithm Fix solves the r-Fix problem in time

$$T(n,k) \leq (2(r-1))^k \cdot n^{\mathcal{O}(1)}.$$

伺 ト イヨ ト イヨト

The *r*-Fix problem can be reduced to:

Min Weighted Partition Problem

Instance: A set N, integer d and functions $f_1, f_2, \ldots, f_d: 2^N \to [-M, M]$ for some integer M. **Question:** What is the minimum w, for which there exists a partition S_1, S_2, \ldots, S_d , such that $\sum_{i=1}^d f_i(S_i) = w$? The *r*-Fix problem can be reduced to:

Min Weighted Partition Problem

Instance: A set N, integer d and functions $f_1, f_2, \ldots, f_d: 2^N \to [-M, M]$ for some integer M. **Question:** What is the minimum w, for which there exists a partition S_1, S_2, \ldots, S_d , such that $\sum_{i=1}^d f_i(S_i) = w$?

Reduction

$$N = V(G), \ d = r, \ M = r \cdot n,$$

$$f_i(S) = \begin{cases} |S \setminus \varphi^{-1}(i)| & \text{if } S \text{ is independent,} \\ r \cdot n & \text{otherwise.} \end{cases}$$

(日) (日) (日)

Theorem (Björklund, Husfeldt and Koivisto)

The Min Weighted Partition problem can be solved in time $\mathcal{O}^*(2^n d^2 M)$ using exponential space and in time $\mathcal{O}^*(3^n d^2 M)$ using polynomial space.

Theorem (Björklund, Husfeldt and Koivisto)

The Min Weighted Partition problem can be solved in time $\mathcal{O}^*(2^n d^2 M)$ using exponential space and in time $\mathcal{O}^*(3^n d^2 M)$ using polynomial space.

Corollary

The r-Fix problem for any fixed r can be solved in time $\mathcal{O}^*(2^n)$ using exponential space and in time $\mathcal{O}^*(3^n)$ using polynomial space.

Graphs with bounded treewidth

If G is a tree (or, more generally, a graph with bounded treewidth), we can use a standard dynamic programming approach:

K[v, i] – the minimum number of vertices, which need to be recolored to obtain a proper coloring of the subtree rooted at a vertex v, such that v gets color i.

$$\mathcal{K}[v,i] = \begin{cases} [\varphi(v) \neq i] & v \text{ is a leaf,} \\ [\varphi(v) \neq i] + \sum_{u \in children(v)} \min_{j \neq i} \mathcal{K}[u,j] & \text{otherwise.} \end{cases}$$

Graphs with bounded treewidth

If G is a tree (or, more generally, a graph with bounded treewidth), we can use a standard dynamic programming approach:

K[v, i] – the minimum number of vertices, which need to be recolored to obtain a proper coloring of the subtree rooted at a vertex v, such that v gets color i.

$$\mathcal{K}[v,i] = \begin{cases} [\varphi(v) \neq i] & v \text{ is a leaf,} \\ [\varphi(v) \neq i] + \sum_{u \in children(v)} \min_{j \neq i} \mathcal{K}[u,j] & \text{otherwise.} \end{cases}$$

Theorem

For any fixed r, the optimization version of r-Fix problem can be solved in time $\mathcal{O}(n \cdot r^{t+2})$, where n is the number of vertices of the input graph and t is its treewidth.

(日) (得) (王) (王)

A fixing number of a graph G is the maximum number of vertices needed to be recolored to obtain a proper coloring from any coloring of G with at least $\chi(G)$ colors, i.e.

 $\overline{\chi}(G) = \max\left\{\overline{\chi}_{\varphi}^{r}(G) : \varphi \colon V(G) \to [r], r \geq \chi(G)\right\}.$

何 ト イヨ ト イヨ ト

Fixing number

A fixing number of a graph G is the maximum number of vertices needed to be recolored to obtain a proper coloring from any coloring of G with at least $\chi(G)$ colors, i.e.

$$\overline{\chi}({\mathcal G}) = \max\left\{\overline{\chi}_{arphi}^{r}({\mathcal G}): arphi: V({\mathcal G})
ightarrow [r], r \geq \chi({\mathcal G})
ight\}.$$

 \rightarrow Attained for $r = \chi(G)$.

伺 と く ヨ と く ヨ と …

Fixing number

A fixing number of a graph G is the maximum number of vertices needed to be recolored to obtain a proper coloring from any coloring of G with at least $\chi(G)$ colors, i.e.

$$\overline{\chi}({\mathcal G}) = \max \left\{ \overline{\chi}_{arphi}^{\it r}({\mathcal G}) : arphi \colon {\it V}({\mathcal G})
ightarrow [{\it r}], {\it r} \geq \chi({\mathcal G})
ight\}.$$

 \rightarrow Attained for $r = \chi(G)$.

Theorem

For all G holds
$$\overline{\chi}(G) \leq \left\lfloor n \cdot \frac{\chi(G)-1}{\chi(G)} \right\rfloor$$
.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Fixing number

A fixing number of a graph G is the maximum number of vertices needed to be recolored to obtain a proper coloring from any coloring of G with at least $\chi(G)$ colors, i.e.

$$\overline{\chi}({\mathcal G}) = \max \left\{ \overline{\chi}_{arphi}^{\it r}({\mathcal G}) : arphi \colon {\it V}({\mathcal G})
ightarrow [{\it r}], {\it r} \geq \chi({\mathcal G})
ight\}.$$

 \rightarrow Attained for $r = \chi(G)$.

Theorem

For all G holds
$$\overline{\chi}(G) \leq \left\lfloor n \cdot \frac{\chi(G)-1}{\chi(G)} \right\rfloor$$
.

• This bound is tight e.g. for complete graphs.

(4月) (4日) (4日)

A fixing number of a graph G is the maximum number of vertices needed to be recolored to obtain a proper coloring from any coloring of G with at least $\chi(G)$ colors, i.e.

$$\overline{\chi}({\mathcal G}) = \max\left\{\overline{\chi}_{arphi}^r({\mathcal G}): arphi \colon V({\mathcal G}) o [r], r \geq \chi({\mathcal G})
ight\}.$$

 \rightarrow Attained for $r = \chi(G)$.

Theorem

For all G holds
$$\overline{\chi}(G) \leq \left\lfloor n \cdot \frac{\chi(G)-1}{\chi(G)} \right\rfloor$$
.

- This bound is tight e.g. for complete graphs.
- $\overline{\chi}(C_{2k+1}) = k$ (compared to roughly $\frac{4k}{3}$ given by the theorem above).

(日) (同) (三) (三)

Further research

Open problem

What is the complexity of the problem for r = 4 and G planar?

(日) (日) (日)

Open problem

What is the complexity of the problem for r = 4 and G planar?

Open problem

What is the complexity of the problem if r is not fixed?

伺 ト イヨ ト イヨ ト

Open problem

What is the complexity of the problem for r = 4 and G planar?

Open problem

What is the complexity of the problem if r is not fixed?

Open problem

Find a polynomial kernel for r-Fix (parametrized by k).

・ 同 ト ・ ヨ ト ・ ヨ ト

Open problem

What is the complexity of the problem for r = 4 and G planar?

Open problem

What is the complexity of the problem if r is not fixed?

Open problem

Find a polynomial kernel for r-Fix (parametrized by k).

Open problem

- Find better bounds for *x̄*(*G*) for planar *G* (or for some other reasonable class of graphs).
- Find another classes of graphs in which the general bound can be beaten.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >