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Ultrametric finite automata and ultrametric Turing
machines

» Introduced by Freivalds in 2012.

» "[..] using p-adic numbers is not merely one of many
possibilities to generalize the definition of deterministic
algorithms but rather the only remaining possibility not yet
explored.”



Probabilities

» Pascal and Fermat believed that every event of indeterminism
can be described by a real number between 0 and 1 called
probability.

» Quantum physics introduced a description in terms of
complex numbers called amplitude of probabilities and later in
terms of probabilistic combinations of amplitudes most
conveniently described by density matrices.

» String theory, chemistry and molecular biology have
introduced p-adic numbers to describe measures of
indeterminism.



p-adic numbers

» For any given prime p the field Q, of p-adic numbers is a
completion of rational numbers.

> p-adic numbers cannot be linearly ordered.

> In 1916 Alexander Ostrowski proved that any non-trivial
absolute value on the rational numbers Q is equivalent to
either the usual real absolute value or a p-adic absolute value.

» Helmut Hasse's local-global principle states that certain types
of equations have a rational solution if and only if they have a
solution in the real numbers and in the p-adic numbers for
each prime p.



Motivation for our paper

» Balodis et al. (2013) showed that regularized ultrametric
automata recognize exactly the set of regular languages.

» Holzer (2009), Yao (1978), Monien (1980), Macarie (1995)
show results for deterministic, nondeterministic and
probabilistic multihead finite automata in the two-way and
one-way cases.



Definitions — p-norm

For every non-zero rational number « there exists a unique prime
factorization o = £2%23*35%7% ... where «; € Z.

The p-adic absolute value (also called the p-norm) of a rational
number o = £2%23%35%77 ... s

p~ %, ifa#0
ledlp = o
0, if a« =0.



Definitions — ultrametric automata

A finite one-way p-ultrametric one-head automaton (lupfa or
lupfa(1)) is a sextuple (S, X, sp,0, Qa, Qr) Where

» S is a finite set—the set of states,

» X is a finite set ($ ¢ X)—input alphabet,

> 5o : S — Qp is the initial amplitude distribution,

» 0:(XU{S$}) xS xS — Qp is the transition function,

> Qa, Qr C S are the sets of accepting and rejecting states,
respectively.
The amplitude distribution after processing the i-th symbol is
denoted as s;, with s;(y) = > csSi—-1(x) - 6 (w;, x, y) for every
y€S.

1> xequ lIsnr1(3), > D ieqp lISn+1(X)|[ 5, then the word w is
said to be accepted, otherwise—rejected.



Results — 1u,fa(1) vs 1nfa(k)

Let n= (g) + 1.
L, = {W11W21 e 1W2,,|W,‘ € {Om|m > 1} N wp = Wgn_;+1}.

Theorem

1. For every prime p there exists a lupfa(1l) that recognizes Ly,
2. Ly cannot be recognized by any 1nfa(k).



Proof — used constructions
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Figure : Automaton for recognizing 0710™10"1---10"10™10".
Double-circled states are rejecting. Large arrows with labels in them show
the amplitude distribution when the automaton starts. Small labelled
arrows show transitions. A label (a, b) indicates that if the automaton
reads a, transition with amplitude b should be made.



Proof — used constructions
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Two-way multi-head automata

» Monien (1980) and Macarie (1995) show that deterministic
and probabilistic two-way finite automata with k heads are
weaker than those with k + 1 heads.

» We show that the same results hold for Ultrametric
multi-head finite automata.



Two-way multi-head ultrametric automata — separation

By C, we denote the subset of a language class C containing only
the words in the form 1*", n € N, more precisely
C={Le(ClvxelIneN:x=1"}

Theorem
For every natural number k and prime p:

—_—

2U,FA(K) G U, TM.

We construct a special p-ultrametric Turing machine with 2 tapes
and log-space space complexity called 7. We show that its
recognized language cannot be recognized by a p-ultrametric
automata with k heads for any k.



Two-way multi-head ultrametric automata — simulation

We use the function

f : {1%"|n € N} — {1%"|n € N}, where £(1%") = 12" Which is
the same as one used by Macarie (1995) and Monien (1980).
When f; is applied to a language, we refer to the following
function: fi(L) = {fk(x)|x € L}.

Lemma .

For every language L € U, TM that is recognized by a 2-tape uptm
in logarithﬂic\space, there exists a natural number u such that:
fu(L) € 2U,FA(3).

We show how a u,tm denoted by 7 that recognizes L can be
transformed into a u,tm called 77, which can then be replaced by
a p-ultrametric 3 register machine. From this, it easily follows that
there exists a 2upfa(3) that recognizes a “stretched” variant of L,
where stretching is done by f,.



Two-way multi-head ultrametric automata

Lemma -
For all languages L € U, TM and all u,v > 1,u,v € N:

— —

fu(L) € 2U,FA(v) = L € 2U,FA(u - v).



Two-way multi-head ultrametric automata

Lemma .
For every language L € U, TM and every u > v > 1,u,v € N:

— —

fur1(L) € 2U,FA(v) = f,(L) € 2U,FA(v + 1).



Two-way multi-head ultrametric automata — hierarchy
classes

Theorem
For all k > 2 € N:

20, FA(K) C 2U,FA(k + 1).

We prove from the contrary by showing that if there exists such
h > 2 that 2U,FA(h) = 2U,FA(h + 1), it implies
2UpFA(h-(h+1)) = m, which contradicts

o —

2U,FA(K) G U, TM.



Questions?
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